Content of present website is being moved to . Registration of will be discontinued on 2020-08-14.
Quantitative Analysis
Parallel Processing
Numerical Analysis
C++ Multithreading
Python for Excel
Python Utilities
Printable PDF file
I. Basic math.
II. Pricing and Hedging.
III. Explicit techniques.
IV. Data Analysis.
V. Implementation tools.
1. Finite differences.
2. Gauss-Hermite Integration.
3. Asymptotic expansions.
4. Monte-Carlo.
A. Generation of random samples.
a. Uniform [0,1] random variable.
b. Inverting cumulative distribution.
c. Accept/reject procedure.
d. Normal distribution. Box-Muller procedure.
e. Gibbs sampler.
B. Acceleration of convergence.
C. Longstaff-Schwartz technique.
D. Calculation of sensitivities.
5. Convex Analysis.
VI. Basic Math II.
VII. Implementation tools II.
VIII. Bibliography
Notation. Index. Contents.

Inverting cumulative distribution.


Suppose a random variable $X$ is given by a distribution density function $p\left( x\right) $ : MATH Let $F\left( x\right) $ be the cumulative distribution of $X$ : MATH The MATH is the inverse function of $F$ : MATH . The variable MATH has the same distribution as $X$ .



Notation. Index. Contents.

Copyright 2007