Quantitative Analysis
Parallel Processing
Numerical Analysis
C++ Multithreading
Python for Excel
Python Utilities
Printable PDF file
I. Basic math.
II. Pricing and Hedging.
III. Explicit techniques.
IV. Data Analysis.
V. Implementation tools.
VI. Basic Math II.
1. Real Variable.
A. Operations on sets and logical statements.
B. Fundamental inequalities.
C. Function spaces.
D. Measure theory.
E. Various types of convergence.
F. Signed measures. Absolutely continuous and singular measures. Radon-Nikodym theorem.
G. Lebesgue differentiation theorem.
H. Fubini theorem.
I. Arzela-Ascoli compactness theorem.
J. Partial ordering and maximal principle.
K. Taylor decomposition.
2. Laws of large numbers.
3. Characteristic function.
4. Central limit theorem (CLT) II.
5. Random walk.
6. Conditional probability II.
7. Martingales and stopping times.
8. Markov process.
9. Levy process.
10. Weak derivative. Fundamental solution. Calculus of distributions.
11. Functional Analysis.
12. Fourier analysis.
13. Sobolev spaces.
14. Elliptic PDE.
15. Parabolic PDE.
VII. Implementation tools II.
VIII. Bibliography
Notation. Index. Contents.

Lebesgue differentiation theorem.

he MATH stands for a ball in $\QTR{cal}{R}^{n}$ centered at $x_{0}$ with radius $r$ . The MATH is the volume of the ball in $\QTR{cal}{R}^{n}$ .


(Lebesgue differentiation theorem). Let MATH be a locally summable function. Then the following takes place everywhere except for a set of measure 0: MATH MATH

Notation. Index. Contents.

Copyright 2007